Self-healing Network or The Magic of Flow Label

Alexander Azimov mitradir@yandex-team.ru

Yandex.Music

Al-powered streaming platform serving over 20 million users in 12 countries

Ad platform serving 53% of the Russian digital advertising market

Personalized, Al-powered content feed with 40 million monthly

users

Yandex.Drive

Carsharing with a fleet of 11,500

vehicles

Alice Facts and fi Russian-speaking intelligent assistant with 35 million monthly

users

P Yandex DeepHD

Facts and figures from some of the intelligent products and services in the Yandex ecosystem

andex

Food delivery from over 10,000 restaurants across 30+ cities

56.3% search share in Russia 67.7% desktop, 50% mobile Self-Driving Car

Tested on public roads in Russia, Israel, and the US Robotaxi service with 3,000+ rides

All figures as of August 2019

Just a Top of Rack Switch (ToR)

ToR + 2xPlanes

S – spine; X – super spine;

ToR + 2xPlanes + ToR

ToR + 4xPlanes + ToR

Many-Many Paths

N_PLANES: Number of planes in DC;

N_X_SPINES: Number of super spines (X) in each plane;

- Inside ToR: 1
- Inside Pod: N_PLANES
- Between Pods: N_PLANES x N_X_SPINES

Many-Many Paths

N_PLANES: Number of planes in DC; (8)

N_X_SPINES: Number of super spines (X) in each plane; (32)

- Inside ToR: 1
- Inside Pod: N_PLANES = 8
- Between Pods: N_PLANES x N_X_SPINES = 256

Self-healing Datacenter: Cookbook

- Does it scale? Yes!
- Does it have many paths? Yes!
- Does it have fault tolerance?

X_{11} is Broken

X_{11} is Broken: No link, No Problem

X_{11} is Broken: Constant Loss

TCP Acknowledgment

TCP Acknowledgment

TCP Retransmits: SACK

TCP Retransmits: SACK

TCP Retransmits: RTO

TCP Retransmits: RTO

RTO = MAX(RTO_MIN, RTT)

TCP Retransmits: RTO

RTO = MAX(RTO_MIN, RTT)

RTO & SYN_RTO Timeouts

RTO = MAX(RTO_MIN, RTT)

Unhappy TCP Flow

Unhappy TCP Flow

The Old Way: Services

- Configure TCP options using sysctl;
- Configure application timeouts;
- TCP sessions reuse with software defined health checks;
- None of these methods are properly evaluated;

The Old Way: NOC

The Old Way: NOC

- Outage!
- Detection (1-5 minutes);
- Isolation (5-15 minutes);

Total: 5-20 minutes of service degradation.

Can Single TCP Flow Use Multiple Paths?

MPTCP – Ordered Subflows

MPTCP – Doesn't Give False Tolerance

IP Headers

IPv4 Header					IPv6 Header			
Version	IHL	Type of Service	Total Length		Version	Traffic Class	Flow Label	
Identification		Flags	Fragment Offset	Payload Length		Next Header	Hop Limit	
Time to L	Time to Live Protocol		Header Checksum					
	Source Address				Source Address			
Destination Address				Source Address				
	(Options		Padding				
Logond								
Legend		kantfrom				Destination A	Address	
		kept from	IPV4 to IP	VO				
		ot in IPv6						
	1.8.1.2.	osition cha	nged in IF	°v6				
New fi	eld in	IPv6						

Flow Label

Linux Kernel

2014

From: Tom Herbert @ 2014-07-02 4:33 UTC (permalink / raw) To: davem, netdev

Automatically generate flow labels for IPv6 packets on transmit. The flow label is computed based on skb_get_hash. The flow label will only automatically be set when it is zero otherwise (i.e. flow label manager hasn't set one). This supports the transmit side functionality of RFC 6438.

Added an IPv6 sysctl auto_flowlabels to enable/disable this behavior system wide, and added IPV6_AUTOFLOWLABEL socket option to enable this functionality per socket.

By default, auto flowlabels are disabled to avoid possible conflicts with flow label manager, however if this feature proves useful we may want to enable it by default.

It should also be noted that FreeBSD has already implemented automatic flow labels (including the sysctl and socket option). In FreeBSD, automatic flow labels default to enabled.

Linux Kernel

2015

From: Tom Herbert <tom@herbertland.com>
To: <davem@davemloft.net>, <netdev@vger.kernel.org>
Cc: <kernel-team@fb.com>
Subject: [PATCH net-next 0/2] net: Initialize sk_hash to random value and res
Date: Tue, 28 Jul 2015 16:02:04 -0700
Message-ID: <1438124526-2129341-1-git-send-email-tom@herbertland.com> (raw)

This patch set implements a common function to simply set sk_txhash to a random number instead of going through the trouble to call flow dissector. From dst_negative_advice we now reset the sk_txhash in hopes of finding a better ECMP path through the network. Changing sk_txhash affects:

- IPv6 flow label and UDP source port which affect ECMP in the network
- Local EMCP route selection (pending changes to use sk_txhash)

Tom Herbert (2): net: Set sk_txhash from a random number

net: Recompute sk_txhash on negative routing advice

Linux Kernel

2016

```
From: Lawrence Brakmo <brakmo@fb.com>
To: netdev <netdev@vger.kernel.org>
Cc: Kernel Team <kernel-team@fb.com>,
        Eric Dumazet <eric.dumazet@gmail.com>,
        Yuchung Cheng <ycheng@google.com>,
        Neal Cardwell <ncardwell@google.com>
Subject: [PATCH v4 net-next] tcp: Change txhash on every SYN and RTO retransmi1
Date: Tue, 27 Sep 2016 19:03:37 -0700
Message-ID: <20160928020337.3057238-1-brakmo@fb.com> (raw)
The current code changes txhash (flowlables) on every retransmitted
SYN/ACK, but only after the 2nd retransmitted SYN and only after
```

2) txhash is changed with every RTO. The result is that we can start re-routing around failed (or very congested paths) as soon as possible. Otherwise application health checks may fail and the connection may be terminated before we start to change txhash.

tcp retries1 RTO retransmits.

1) txhash is changed with every SYN retransmits

With this patch:

```
v4: Removed sysctl, txhash is changed for all RTOs
v3: Removed text saving default value of sysctl is 0 (it is 100)
```

net.ipv6.auto_flowlabels

0: automatic flow labels are completely disabled

1: automatic flow labels are enabled by default, they can be disabled on a per socket basis using the IPV6_AUTOFLOWLABEL socket option

2: automatic flow labels are allowed, they may be enabled on a per socket basis using the IPV6_AUTOFLOWLABEL socket option

3: automatic flow labels are enabled and enforced, they cannot be disabled by the socket option

Default: 1

Flow Label: Yet Some Search Engine

Google Scholar	flow label tcp Q Результатов: примерно 18 200 (0,08 сек.) С					
Статьи						
За все время	A Collaborated IPv6-Packets Matching Mechanism Base on Flow Label in					
C 2020	OpenFlow					
C 2019	W Sun, H Wei, Z Ji, Q Zhang, C Lin - International Conference on, 2015 - Springer					
С 2016 Выбрать даты	and compare the latency, the jitter and the size of flow table between flow table with flow label and flow table without flow label , and proved that The first edition of OpenFlow focused on IPv4 and did not support IPv6 flow [7]. ONF started to consider how IPv6 flows could be					
2014 —	🛠 🔊 Цитируется: З Похожие статьи Все версии статьи (3)					
Поиск	TCP-GEN framework to achieve high performance for HAIPE-encrypted TCP					
	traffic in a satellite communication environment					
	Y Kim, JY Jo, R Harkanson 2018 IEEE International, 2018 - ieeexplore.ieee.org					
По релевантности По дате	Even if a collision occurs, no data is lost, but an interference will occur between the merged TCP flows. TABLE II IP, Source Port, Dest. Port)} TABLE III. IPV6 HEADER FIELDS TO ENCODE FLOW ID Old Fields Flow Label (20 bits) New Fields TCP Marker (1 bit) TCP flags (3					
включая патенты	🛱 埦 Цитируется: 4 Похожие статьи Все версии статьи (2)					
🗹 показать цитаты	OpenTCP: Combining congestion controls of parallel TCP connections					
	S Islam, M Welzl, S Gjessing 2016 IEEE Advanced, 2016 - ieeexplore.ieee.org					
Создать оповещение	life experiments to prove that OpenTCP can efficiently control several concurrent end-to-end flows 1] S. Amante, B. Carpenter, S. Jiang, and J. Rajahalme, "IPv6 Flow Label Specification," RFC rfc/rfc6437.txt [2] L. Andrew, S. Floyd, and G. Wang, "Common TCP evaluation suite					
	☆ 50 Цитируется: 4 Похожие статьи Все версии статьи (3)					
	System and method for conveying the reason for TCP reset in machine-readab					
	form					
	<u>JM Smith</u> , CF Lai, AR Carlini, AS Chittenden - US Patent 8,891,532, 2014 - Google Patents US8891532B1 - System and method for conveying the reason for TCP reset in machine-readable					
	form - Google Patents. System and method for conveying the reason for TCP reset in machine-readable					
	machine-readable form. Download PDF Info TCP segments have the following general format					
	🛣 💯 Цитируется: 35 Похожие статьи Все версии статьи (2) 🔊					

There is nothing...

Unhappy TCP Flow

Unhappy TCP Flow Becomes Happier

RTO & SYN_RTO Timeouts

RTO = MAX(RTO_MIN, RTT)

How to Reduce RTO Timeouts?

ip route get ADDRESS [from ADDRESS iif STRING] [oif STRING] [tos TOS]

ip route { add | del | change | append | replace | monitor } ROUTE

SELECTOR := [root PREFIX] [match PREFIX] [exact PREFIX] [table TABLE_ID] [proto RTPROTO] [
type TYPE] [scope SCOPE]

```
ROUTE := NODE_SPEC [ INFO_SPEC ]
```

NODE_SPEC := [TYPE] PREFIX [tos TOS] [table TABLE_ID] [proto RTPROTO] [scope SCOPE] [metric METRIC]

```
INFO_SPEC := NH OPTIONS FLAGS [ nexthop NH ] ...
```

NH := [via ADDRESS] [dev STRING] [weight NUMBER] NHFLAGS

OPTIONS := FLAGS [mtu NUMBER] [advmss NUMBER] [rtt TIME] [rttvar TIME] [window NUMBER] [cwnd NUMBER] [initcwnd NUMBER] [ssthresh REALM] [realms REALM] [rto_min TIME] [initrwnd NUMBER]

SYN_RTO is Different

1 Second

eBPF


```
/* If the first 5.5 bytes of the IPv6 address are the same
 * then both hosts are in the same datacenter
 * so use an RTO of 10ms
 */
if (skops->local_ip6[0] == skops->remote_ip6[0] &&
    (bpf_ntohl(skops->local_ip6[1]) & 0xfff00000) ==
    (bpf_ntohl(skops->remote_ip6[1]) & 0xfff00000))
    rv = 10;
```

Changing SYN RTO

https://elixir.bootlin.com/linux/latest/source/samples/bpf/tcp_synrto_kern.c

Evaluation: Without Flow Label

One of four ToR uplinks drops packets, significant service degradation

Evaluation: Flow Label + eBPF

One of four ToR uplink drops packets, no effect on the service!

Self-healing Datacenter: Cookbook

- Does it scale? Yes!
- Does it have many paths? Yes!
- Does it have fault tolerance? Use IPv6! Use flow label!
- How do I change RTO? eBPF is the answer!
- Without documentation!

Side Effect

Flow Label: Safe Mode

Client – sends SYN, Server – responds with SYN&ACK

- In case of SYN_RTO or RTO events Server SHOULD recalculate its TCP socket hash, thus change Flow Label. This behavior MAY be switched on by default;
- In case of SYN_RTO or RTO events Client MAY recalculate its TCP socket hash, thus change Flow Label. This behavior MUST be switched off by default;

- Flow label provides is a way to 'jump' from a failing path;
- Already works in controlled environment;
- Can disrupt TCP connection for stateful anycast services;
- We need to change Linux defaults!
- This time we need to document it!