Self-healing Network
or
The Magic of Flow Label

Alexander Azimov mitradir@yandex-team.ru

mailto:mitradir@Yandex-team.ru

Yandex.Direct Yandex Zen

Yand BXM USIC Ad platform serving 53% of the Personalized, Al-powered content Ya" d EXTaX|
Al-upwmﬂd sirearming nlatfurm Russian digital advertising feed with 40 million monthly Ride-hailing in 17 countries with
serving over 20 million users in market USErS over 1 billion rides
12 countries Y
AI'BB Facts and figures from some of the intelligent products and services in the Yandex ecosystem Ya ndex Drive

Russian-speaking intelligent T
Carsharing with a fleet of 11,500

assistant with 35 million monthly .
lUSers @ 0 vehicles

Yandex.Eats Search Self-Driving Car

Food delivery from over 10,000 Tested on public roads in Russia,

. . .
restaurants across 30+ cities 56.3% search share in Russia srael, and the US

61.T% desktop, 50% mobile Robotaxi service with 3,000+ rides Al fgures as of August 2015

Just a Top of Rack Switch (ToR)

Servers a

|
|
II ToR;
|

proto
Src_ip
hash| dst_ip

src_port
dst_port

ToR + 2xPlanes

oo
OGRCRNG

ervers

|

|

[oWo

(src_ip) @ @ @ S —spine;
hash

X —super spine;

ToR + 2xPlanes + ToR

oo
OGRCING

:: — < @; ‘@
o o~
() ozl e

ToR + 4xPlanes + ToR

Servers Servers

|
|
| TOR1
|
|

(%23

~5

@ ToR,
~5

proto

src_ip
st (sfitpiit) @W@
G G G

dst_port

Many-Many Paths

N_PLANES: Number of planes in DC;
N_X_ SPINES: Number of super spines (X) in each plane;

* Inside ToR: 1
* Inside Pod: N_PLANES
 Between Pods: N _PLANES x N_X_ SPINES

Many-Many Paths

N_PLANES: Number of planes in DC; (8)
N X SPINES: Number of super spines (X) in each plane; (32)

* Inside ToR: 1
* Inside Pod: N_PLANES =8
 Between Pods: N _PLANES x N_X_ SPINES = 256

Selt-healing Datacenter: Cookbook

* Does it scale? Yes!
* Does it have many paths? Yes!

 Does it have fault tolerance?

X411 is Broken

o
| |

N

dedede

X411 is Broken: No link, No Problem

() A

()7 () (o
|
|
II ToR, @ @ ToR,
| ’ ‘
proto ‘
Src_ip
hash @

X411 is Broken: Constant Loss

TCP Acknowledgment

.|

Sender

Receiver

TCP Acknowledgment

Sender

e ——

-
Nﬁ —’
. -
~—_ —_—
e o e mw o o -

Receiver

TCP Retransmits; SACK

Sender

- —

- -
— -—
—y -
_———__————_

Receiver

TCP Retransmits; SACK

EEN

Sender

Receiver

TCP Retransmits: RTO

e ——

Sender Receiver
b\ 7
~ ~ - - g

-
Nﬁ —’
i -
~—— ———
e o e mw o o -

+Delayed ACK Timer

TCP Retransmits: RTO

Sender

-

n +RTO

-
N~ —’
i -
~—— ———
e o e mw o o -

RTO = MAX(RTO_MIN, RTT)

Receiver

m +Delayed ACK Timer

TCP Retransmits: RTO

Sender

-

n +RTO

+2 X RTO

-
N~ —’
i -
~—— ———
e o e mw o o -

RTO = MAX(RTO_MIN, RTT)

Receiver

m +Delayed ACK Timer

RTO & SYN RTO Timeouts

140

120

100

80

60

40

20

Timeout in Seconds

/

——————

1th retry

2th retry

3th retry 4th retry 5th retry 6th retry 7th retry

==S5YN =—=DATA

RTO = MAX(RTO_MIN, RTT)

Timeouts
RTO_MIN SYN_RTO
200ms 1s
Real RTT
1ms

Unhappy TCP Flow

P ONORRO
\::\ Servers

Servers N
~
| IEN | '
SO0 | |
| RN
I SS3 | |
TOR1 ! TORZ | |
|
| | |

proto
Src_ip
hash| dst_ip

src_port
dst_port

Unhappy TCP Flow

L
RTO S12 Rz~
IS Servers
Servers RN

| | SN | '
| | \\:\:\\ | |
\\:\\ I |
II II TORl \k TORZ | |
I | I |
proto
Src_ip
hash| dst_ip
src_port

dst_port

The Old Way: Services

e Configure TCP options using sysctl;

e Configure application timeouts;

TCP sessions reuse with software defined health checks;

* None of these methods are properly evaluated;

THIS IS FINE.

The Old Way: NOC

The Old Way: NOC

e Outage!
e Detection (1-5 minutes);

e |solation (5-15 minutes);

Total: 5-20 minutes of service degradation.

Can Single TCP Flow Use Multiple Paths?

TCP sub-flow 2

TCP sub-flow 1

MPTCP — Ordered Subflows

Client

SYN MP_CAPABLE

Server

SYN+ACK MP_CAPABLE

J §

First subflow <|:

ACK MP_CAPABLE

SYN MP_JOIN

SYN+ACK MP_JOIN

Second subflow <|:<

ACK MP_JOIN

MPTCP — Doesn’t Give False Tolerance

Client Server

SYN MP_CAPABLE

SYN+ACK MP_CAPABLE
First subflow
ACK MP_CAPABLE

SYN MP_JOIN

SYN+ACK MP_JOIN
Second subflow
ACK MP_JOIN

IP Headers

IPv4 Header
Version |HL ;‘yerp;:; Total Length
Identification Flags me
Time to Live Protocol Header Checksum
Source Address
Destination Address
Options Padding

Legend
Field's name kept from IPv4 to IPv6
Field not kept in IPv6
Name and position changed in IPv6
New field in IPv6

IPv6 Header

Version Traffic Class

Flow Label

Next

Payload Length Header

Source Address

Destination Address

Hop Limit

[CAUTION]|

Conspiracy Theory
Ahead

Flow Label

From: Tom Herbert @ 2814-87-82 4:33 UTC (permalink / raw)
To: davem, netdev

Automatically generate flow labels for IPvE packets on transmit.
The flow label is computed based on skb _get hash. The flow label will

only automatically be set when it is zero otherwise (i.e. flow label
manager hasn't set one). This supports the transmit side functiconality
of RFC 6438.

Added an IPv6 sysctl auto flowlabels to enable/disable this behavior
system wide, and added IPV6 AUTOFLOWLABEL socket option to enable this

functionality per socket.

By default, auto flowlabels are disabled to avoid possible conflicts
with flow label manager, however if this feature proves useful we
may want to enable it by default.

It should also be noted that FreeBS5D has already implemented automatic
flow labels (including the sysctl and socket option). In FreeBSD,
automatic flow labels default to enabled.

From: Tom Herbert <tom@herbertland.com>

To: <davem@davemloft.net>, <netdevi@vger.kernel.org>

Cc: <kernel-team@fb.com>

Subject: [PATCH net-next 8/2] net: Initialize sk hash to random value and res
Date: Tue, 28 Jul 2815 16:82:04 -0760

Message-ID: <1438124526-2129341-1-git-send-email-tom@herbertland.com> (raw)

This patch set implements a common function to simply set sk _txhash to
a random number instead of going through the trouble to call flow
dissector. From dst negative advice we now reset the sk _txhash in hopes
of finding a better ECMP path through the network. Changing sk_txhash
affects:
- IPv6 flow label and UDP source port which affect ECMP in the network
- Local EMCP route selection (pending changes to use sk_txhash)

Tom Herbert (2):
net: Set sk_txhash from a random number
net: Recompute sk _txhash on negative routing advice

From: Lawrence Brakmoc <brakmo@fb.com:
To: netdev <netdev@vger.kernel.org:>
Cc: Kernel Team <kernel-team@fb.com>,
Eric Dumazet <eric.dumazetf@gmail.com>,
Yuchung Cheng <ycheng@google.com>,
Neal Cardwell <ncardwell@@google.com>
Subject: [PATCH w4 net-next] tcp: Change txhash on every SYN and RTO retransmii
Date: Tue, 27 5ep 2816 19:83:37 -8788
Message-ID: <20168928028337.3057238-1-brakmo@fb.com> (raw)

The current code changes txhash (flowlables) on every retransmitted
SYN/ACK, but only after the 2nd retransmitted SYN and only after
tcp _retriesl RTO retransmits.

With this patch:
1) txhash is changed with every SYN retransmits
2) txhash is changed with every RTO.

The result is that we can start re-routing around failed (or very
congested paths) as soon as possible. Otherwise application health
checks may fail and the connection may be terminated before we start
to change txhash.

vd: Removed sysctl, txhash is changed for all RTOs
w3: Removed text savine default wvalue of swsetl s 8 (1t 1s 1686%

net.ipvb.auto flowlabels

0: automatic flow labels are completely disabled

1: automatic flow labels are enabled by default, they can be disabled
on a per socket basis using the IPV6_AUTOFLOWLABEL socket option

2: automatic flow labels are allowed, they may be enabled on a per
socket basis using the IPV6_ AUTOFLOWLABEL socket option

3: automatic flow labels are enabled and enforced, they cannot be
disabled by the socket option

Default: 1

Flow Label: Yet Some Search Engine

GO gle Scholar flow label tcp n

Crtatbk Pesynistatos: npumepHo 18 200 (0,08 cex.

3a BCe BpeMA A Collaborated IPv6-Packets Matching Mechanism Base on Flow Label in
C 2020 OpenFlow

C 2019 W Sun, HWei, 7 Ji, Q Zhang, C Lin - International Conference on 2015 - Springer

C 2016 and compare the latency, the jitter and the size of flow table between flow table with flow label

and flow table without flow label_and proved that The first edition of OpenFlow focused on IPv4
and did not support IPv6G flow [7]. ONF started to consider how IPv6 flows could be ...
2014 — T 99 Lntupyetca: 3 [MNoxowue ctatb Boe Bepcumn cTatbk (3)

BriGpate gartel

Mouck TCP-GEN framework to achieve high performance for HAIPE-encrypted TCP
traffic in a satellite communication environment
Y Kim, JY Jo, R Harkanson... - 2018 |EEE International ..., 2018 - ieeexplore ieee org

o peneeaHTHOCTH ... Even if a collision occurs, no data is lost, but an interference will occur between the merged TCP
Mo nate flows TABLE Il _ IP. Source Port, Dest Port)} TABLE Il IPV6 HEADER FIELDS TO ENCODE FLOW
ID Old Fields Flow Label (20 bits) New Fields TCP Marker (1 bit) TCP flags (3

¥ U9 Liutupyetca: 4 TNoxoxue cTaTe Bee Bepcuu cTatkM (2)

¥ BKMioYan natexTol

¥ nokazars yuTaTs OpenTCP: Combining congestion controls of parallel TCP connections

S Islam, M Welzl, S Gjessing... - 2016 IEEE Advanced ..., 2016 - ieeexplore.ieee.org

&4 Coanatk onoeelleHne ... life experiments to prove that OpenTCP can efficiently control several concurrent end-to-end
flows ... 11 S. Amante, B. Carpenter, S. Jiang, and J. Rajahalme, “IPv6 Flow Label Specification,”
RFC ... rc/rfc6437 ixt [2] L. Andrew, S. Floyd, and G. Wang, “Common TCP evaluation suite .

vr Y LuTupyetca: 4 TNoxoxue cTaTe Bee Bepcuu cTateM (3)

System and method for conveying the reason for TCP reset in machine-readable
form

JM Smith, CF Lai, AR Carlini, AS Chittenden - US Patent 8,891,532, 2014 - Google Patents
US8891532B1 - System and method for conveying the reason for TCP reset in machine-readable

form - Google Patents. System and method for conveying the reason for TCP reset in

machine-readable form. Download PDF Info ... TCP segments have the following general format ...

¢ U9 Uwntupyerca: 35 Moxoxwe cTaTek Bce Bepcwn cratsek (2) 59

There is nothing...

" | KNOW WHATYOU

: o . I
] *A E
,..;. | !
- .':. - 4 o . - A " -
o - - g

Unhappy TCP Flow

Servers *:::

Servers

TORZ

O ©

proto
dst_ip
hash src_port

\ dst_port
flow label

Servers

Unhappy TCP Flow Becomes Happier

|
|
II ToR,
|

hash

proto

Src_ip

dst_ip
src_port
dst_port
\fhnvlabel

SACK

RTO

" ToR,

Servers

RTO & SYN RTO Timeouts

140

120

100

80

60

40

20

Timeout in Seconds

/

——————

1th retry

2th retry

3th retry 4th retry 5th retry 6th retry 7th retry

==S5YN =—=DATA

RTO = MAX(RTO_MIN, RTT)

Timeouts
RTO_MIN SYN_RTO
200ms 1s
Real RTT
1ms

How to Reduce RTO Timeouts?

ip route get ADDRESS [from ADDRESS iif STRING | [oif STRING | [tos TOS |
ip route { add | del | change | append | replace | monitor } ROUTE

SELECTOR := [root PREFIX | | match PREFIX | [exact PREFIX | [table TABLE ID][proto RTPROTO] [
type TYPE] [scope SCOPE |

ROUTE := NODE_SPEC [INFO_SPEC]

NODE SPEC := [TYPE | PREFIX [tos TOS] [table TABLE ID | [proto RTPROTO] [scope SCOPE | |
metric METRIC |

INFO_SPEC := NH OPTIONS FLAGS [nexthop NVH] ...

NH := [via ADDRESS] [dev STRING] [weight NUMBER] NHFLAGS

OPTIONS := FLAGS [mtu NUMBER] [advmss NUMBER | [rtt TIME] [rttvar TIME 1 [window NUMBER
] [ewnd NUMBER] [initcwnd NUMBER | [ssthresh REALM | [realms REALM ||| rto_min TIME |||

initrwnd NUMBER |

SYN RTO is
Different

eBPF

netdevice

Source Code

Userspace

LLVM / clang

Bytecode

000 CA FE BA
001 54 65 72
002 61 2F 4C
004 3B 17 6A

A 4

add eax, edx
shl eax, 2

Ingress

Kernel

Sockets

add eax, edx
shl eax, 2

netdevice

/* Check for TIMEOUT INIT operation and IPv6 addresses */
if (op == BPF_SOCK OPS_TIMEOUT INIT &%
skops->family == AF_INET6) -

/* If the first 5.5 bytes of the IPvé6 address are the same
* then both hosts are in the same datacenter
* 50 use an RTO of 1éms
*/
1t (skops->local _ipe[@]| == skops->remote_ipe|[@]| &&
(bpf_ntohl(skops->local ip6[1]) & exfffesese) ==
(bpf _ntohl(skops->remote_ip6[1]) & exfffeesee))
rv = 10;

Chang|ng SYN RTO https://elixir.bootlin.com/linux/latest/source/samples/bpf/tcp synrto kern.c

https://elixir.bootlin.com/linux/latest/source/samples/bpf/tcp_synrto_kern.c

Evaluation: Without Flow Label

75%

One of four ToR uplinks drops packets, significant service degradation

Evaluation: Flow Label + eBPF

75%

1357 1358 13:59 1400 1401 1402 1403 1404

One of four ToR uplink drops packets, no effect on the service!

Selt-healing Datacenter: Cookbook

* Does it scale? Yes!

* Does it have many paths? Yes!

* Does it have fault tolerance? Use IPv6! Use flow label!
* How do | change RTO? eBPF is the answer!

e Without documentation!

Side Effect

srcipc dstip

src port | dst port

Data

A 4 A 4

RTO

srcipc dstip

FLXXX

g TCP Proxy
Anycast IP
Anycast IP

g TCP Proxy
FLYYY

src port | dst port

Data

Flow Label: Safe Mode

Client — sends SYN, Server — responds with SYN&ACK

* In case of SYN_RTO or RTO events Server SHOULD recalculate its TCP
socket hash, thus change Flow Label. This behavior MAY be switched
on by default;

* In case of SYN_RTO or RTO events Client MAY recalculate its TCP
socket hash, thus change Flow Label. This behavior MUST be switched
off by default;

TCP
Selt-healing Da nter: Cookbook

Flow label provides is a way to ‘jump’ from a failing path;

Already works in controlled environment;

Can disrupt TCP connection for stateful anycast services;

We need to change Linux defaults!

This time we need to document it!

